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Abstract

BACKGROUND: Graphene is an allotrope of carbon with two-dimensional (2D) monolayer honeycombs. A larger detection area
and higher sensitivity can be provided by a graphene based nanosenor because of its two-dimensional structure. In addition,
owing to its special characteristics including electrical, optical and physical properties, graphene is a known more suitable
candidate than other materials for use in sensor applications.

RESULT: In this research, a set of novel models employing field effect transistor (FET) structures using graphene has been
proposed and the current–voltage (I-V) characteristics of graphene have been employed to model the sensing mechanism. An
adaptive neuro fuzzy inference system (ANFIS) algorithm has been used to provide another model for the current–voltage (I-V)
characteristic.

CONCLUSION: It has been observed that the graphene device experiences a large increase in conductance when exposed to
Escherichia coli bacteria at 0–104 cfu mL−1 concentrations. Accordingly, the proposed model exhibits satisfactory agreement
with the experimental data and this biosensor can detect E. coli bacteria providing high levels of sensitivity.
© 2015 Society of Chemical Industry
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INTRODUCTION
The discovery of Escherichia coli bacteria in human colon goes back
to 1885 and is associated with German bacteriologist Theodor
Escherich. He found correlations between particular strains of the
bacteria and diarrhoea and gastroenteritis in infants which was a
significant finding in the public health area; hence the change of
the name of the bacteria from Bacterium Coli to Escherichia Coli in
his honor.1,2 It must be noted that most E. coli bacteria do not cause
any illness in humans, and some act to the benefit of the human
body. However, several E. coli bacteria cause infections that are not
gastrointestinal disorders, but rather those of the urinary tract.3,4

In E. coli sensing several biosensor structures have been used,
such as optical biosensors, photodiode based sensing,5 integrated
waveguide biosensors6 electro-chemical sensing techniques7 – 10

or carbon nanotube biosensors based on a FET structure with
very high limits of sensing.11 – 14 Nonetheless, most of these exper-
iments need the use of labels for detection; hence, a simpler
method is required. Many of these biosensor fabrications are
unmanageable or the limit of sensing is remarkably lower than pre-
ferred. Properties and definition of nanomaterials utilized as part of
nanobiotechnology for E. coli sensing is recorded in Table 1.

Here, we describe a graphene based nanoelectronic sensor giv-
ing extremely sensitive bacteria (E. coli) detection (10 cfu mL−1). In
contrast to the mentioned approaches, which are time-consuming
and tedious, the graphene based nano-electronic sensor offers
sensitive and rapid measurement. The novelty of the approach
is that, for the first time, the effect of E. coli detection on
graphene electrical properties has been studied and formulated.

Furthermore, typically, two distinct states, namely equilibrium
(statistical) and non-equilibrium conditions are considered in
most studies. In this research, both states have been applied in
the mathematical formulation of sensor models.

Carbon-based materials have been explored extensively to
accommodate advancing technology.15 – 17 The discovery of a
single atomic sheet of graphite layer or graphene by Andre
Geim in 2004 has attracted much interest by communities of
researchers and by technology due to its superb electronic
properties.18 – 21,20,22 – 25 Graphene has a very high charge carrier
mobility which can exceed 200 000 cm2 V−1 s−1 at room tem-
perature. According to experimental transport measurement
results, due to the extraordinary feature of high electron mobility,
graphene can serve as an extremely attractive material for use in
nano-electronic devices, particularly in sensor applications.26 – 29
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Table 1. Description and properties of nanomaterials used in nanobiotechnology for E. coli detection

Material
Recognition

element
Signal transduction

method Pathogen Detection range Ref.

Quantum dots Antibody Fluorescence E. coli O157:H7 106 cells/mL (PBS) (52)
Antibody Fluorescence E. coli 104cfu/mL

Carbon nanotubes
SWNT
MWNT

Aptamer Fluorescence E. coli 103cfu/mL (14)
(53)
(54)
(55)

Magnetic nanoparticle CP1 Magnetic E. coli O157:H7 104cfu/mL (PBS-T) (56)
(57)
(58)

Magnetic bead/quantum dot Antibody Fluorescence E. coli 0157:H7 103cfu/mL (brain) (59)
RuBpy doped silica Antibody Fluorescence E. coli O157:H7 1 cell mL−1 (PBS) (60)

Graphene nanoribbons (GNRs) are narrow graphene strips pro-
duced by standard lithographic techniques.

Herein, we introduce an FET biosensor modified by graphene
which shows enhanced performance for measuring bacterium.
Prototype FET structures have indicated excellent performance
for transistors, interconnects, electromechanical switches, infrared
emitters and biosensors.30,31 As can be seen in Fig. 1, it looks similar
to the electrolyte-gated field-effect transistor and a graphene
channel connects the source and drain electrodes.32,33 When E. coli
bacteria come into contact with the surface or edge of graphene,
the amount of carrier concentration changes due to the variability
of the drain source current which is a measurable parameter.
According to the relation between conductivity and charge carrier
density or carrier mobility, the adsorbed molecules change the
conductivity of the graphene.34 – 37

In addition to the analytical model, an adaptive neuro fuzzy
inference system (ANFIS) algorithm has been developed.

EXPERIMENTAL
A chemical vapor deposition (CVD) method using ethanol was
used to grow graphene film on copper foil. It was coated with
a thin layer of poly-methyl methacrylate (PMMA) dissolved in
chlorobenzene. Then by using a chemical etching method the
graphene/PMMA was released from the copper foil. The drain
and source (two electrodes) were prepared and connected to the
graphene using silver. Lastly, for electrode insulation silicon rubber
was used.4

Escherichia coli (K12 ER2925) was bought from New England Bio-
lab and cultured in LB (Luria Bertani) medium at 37 ∘C. Culturing
and colony counting methods were used for E. coli production at
107 cfu mL−1 density. It was prepared for experimental work by
diluting it in PBS solution (PH 7.2). The harvested E. coli was stored
at –80 ∘C. A semiconductor device analyzer was used for electri-
cal measurement (Agilent, B1500A) and all measurements were
done under ambient conditions. The gate voltage was applied
via an Ag/AgCl electrode immersed in PBS solution on top of the
graphene and the graphene device was biased at 100 mV.4

PROPOSED MODEL
An E. coli in contact with a film of antibody functionalized
graphene is illustrated in Fig. 1. In this configuration, to check
the system response and to find the kinetics of bacteria binding,
the sensor was kept in chambers with 104 cfu mL−1 of E. coli.4,38

As higher numbers of E. coli are caught by the graphene film
antibodies, the conductance of the channel increases. Operating
the graphene FET in the p-type region with zero gate voltage
confirms that the graphene conductance increases as a result of
higher levels of hole density caused by the high negativity of the
walls of the bacteria.

It has been proved by experimental methods that the conduc-
tance of graphene is a function of carrier density and mobility. In
other words, changes in electron density and/or charge carriers
by adsorption of E. coli molecules or ions in graphene change the
conductance:39

We begin the modelling by carrier concentration given as:40,41

n = ∫ D (E) f (E) d (E) (1)

where f (E) is Fermi Dirac distribution and D(E) the density of state
(DOS) and can be written as:40

D (E) = 1
3𝜋tac−c

E√
E2 −

(
Eg

2

)2
(2)

in which aC − C = 1.42 Årepresents carbon–carbon (C–C) bond
length, and t = 2.7 (eV) is the nearest neighbour C–C tight binding
overlap energy. Eg is the band gap energy which can be written for
monolayer graphene as:42,43

Eg = 2𝜋
√

3
( p

N + 1
− 2

3

)
(3)

in which p signifies an integer number, and the Fermi Dirac
distribution f (E) is defined as:44

f (E) = 1

exp
(

E−EF

kB T

)
+ 1

(4)

where EF is Fermi energy, KB is Boltzmann’s constant, T is tempera-
ture and E is energy. Then the E. coli concentration is written as:

n = ∫
1

3𝜋tac−c

E√
E2 −

(
Eg

2

)2
.

1

exp
(

E−EF

kBT

)
+ 1

.d (E) (5)

The quantum capacitance is shown as:45

Cq = 𝛿Q
𝛿V

(6)
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Figure 1. Graphene-FET for detection of E. coli.

in which Q is the charge measured in coulombs and
𝛿Q= e. 𝛿nTotal , e is electron charge, nTotal = n+ n′, where n is
inherent carrier concentration and n′ is the amount of carrier
concentration when bacteria is injected.
𝜕V = 𝜕E

e
is the voltage applied to the device and Cq is given as:46

Cq =
e𝜕nTotal

𝜕E

e

(7)

which becomes by a simple mathematical rearrangement:

Cq = e2 𝜕nTotal

𝜕E
(8)

Using the definition of nTotal , the following equation can be
written for quantum capacitance:

Cq = e2 𝜕n
𝜕E

+ e2 𝜕n′

𝜕E
(9)

The performance of a biosensor based on graphene nanos-
tructure is demonstrated by its conductance characteristic. As Vg

results in altering the conductance of the channel, one of the
parameters that has strong influence on biosensor conductance
is E. coli concentration, so we can write:

n′ = 𝜓FEC (10)

where (FEC) is the carrier concentration of E. coli and the control
parameter is indicated by (𝜓 ). As a result, the quantum capacitance
can be written as:

Cq = e2.
1

3𝜋tac−c

E√
E2 −

(
Eg

2

)2
.

1

exp
(

E−EF

kBT

)
+ 1

+ e2 
𝜕FEC

𝜕t
𝜕t
𝜕E

(11)

The GFET conductance can be written as follows:

G =

⎛⎜⎜⎜⎜⎝
e2.

1
3𝜋tac−c

E√
E2 −

(
Eg

2

)2
.

1

exp
(

E−EF

kB T

)
+ 1

+ e2𝜓
𝜕FEC

𝜕t
𝜕t
𝜕E

⎞⎟⎟⎟⎟⎠
.Vds.𝜇e (12)

Based on the analytical model, 𝜓 is introduced as the E. coli
controlled parameter and shows the rate of change in conductivity
depends on E. coli concentration that is given by:

𝜓 = aLn
(

FEC

)
+ b (13)

where the constant parameters have been calculated as a= 57550
and b= 18848.

ANFIS MODEL
Fuzzy logic (FL) and fuzzy inference systems (FIS), first proposed
by Zadeh (1965), provide a solution for making decisions based
on vague, ambiguous, imprecise or missing data. FL represents
models or knowledge using IF–THEN rules. A neuro-fuzzy sys-
tem is functionally equivalent to a FIS. A FIS mimics a human
reasoning process by implementing fuzzy sets and approximate
reasoning mechanism which use numerical values instead of log-
ical values. A FIS requires a domain expert to define the MFs
and to determine the associated parameters both in the MFs,
and the reasoning section. However, there is no standard for the
knowledge acquisition process and thus the results may be dif-
ferent if a different knowledge engineer is at work in acquiring
the knowledge from experts. A Neuro-Fuzzy system can replace
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Figure 2. ANFIS architecture.

Figure 3. Schematic of implemented ANFIS.

Figure 4. Membership functions.

J Chem Technol Biotechnol 2016; 91: 1728–1736 © 2015 Society of Chemical Industry wileyonlinelibrary.com/jctb



1732

www.soci.org E Akbari et al.

Table 2. MFs ranges

Cfu mL−1 In1mf1 In1mf2 In1mf3 In1mf4 In1mf5

0 0.008462–0.01495 .01433–0.03209 0.01538–0.08101 0.01481–0.1316 0.01438–0.1809
0.01486–0.01832 0.01469–0.06739 0.01498–0.1177 0.01307–0.1659 0.008462–0.2142

10 0.008462–0.01495 0.01336–0.03282 0.01575–0.08103 0.01477–0.1314 0.01471–0.1808
0.01499–0.01845 0.01496–0.06784 0.01489–0.1176 0.01276–0.166 0.008462–0.2142

100 0.008493–0.015 0.01364–0.03241 0.01456–0.0827 0.01334–0.1333 0.01522–0.1821
0.01475–0.0182 0.0162–0.06944 0.01575–0.1189 0.0126–0.1674 0.008493–0.215

1000 0.0084–0.0141 0.0.01327–0.03302 0.01431–0.08198 0.01629–0.1303 0.01354–0.1811
0.01504–0.01902 0.0144–0.06752 0.01447–0.1173 0.01384–0.1664 0.0084–0.2134

10000 0.007842–0.01385 0.01259–0.0301 0.0147–0.07481 0.01441–0.1219 0.01365–0.1673
0.0127–0.0163 0.01579–0.06372 0.01273–0.1089 0.01257–0.1539 0.007842–0.1985

Figure 5. Fuzzy rule viewer for input and output variables of ANFIS model.

the knowledge acquisition process by humans using a training
process with an input–output training dataset. Thus instead of
being dependent on human experts the Neuro-Fuzzy system will
determine the associated parameters through a training process,
by minimizing an error criterion. A popular Neuro-Fuzzy system
is an ANFIS, a fuzzy system that uses an artificial neural net-
work theory to determine its properties (fuzzy sets and fuzzy
rules).47,48

The main objective of ANFIS modeling is to map the inputs
to outputs to find a function f̂ for a given input vector
X = (x1, x2, x3, … , xn) in order to predict output ŷ as close
as possible to its actual outputy. Assume m observations
of multi-input–single-output data pairs is available such as
X = (xi1, xi2, xi3, … , xin), and

yi = f
(

xi1, xi2, xi3, … , xin

)
i = 1, 2, … ,m (14)

It is now possible to build a model using ANFIS in a prediction
task for any given new input vectorX = (xi1, xi2, xi3, … , xin). This
prediction,ŷi is an approximation of ythat can be presented as

ŷi = f̂
(

xi1, xi2, xi3, … , xin

)
i = 1, 2, … ,m (15)

The goal is to minimize the difference between the actual output
and the predicted one by determining an ANFIS model.

m∑
i=1

[̂
f
(

xi1, xi2, xi3, … , xin

)
− yi

]2
→ min . (16)

Indeed, in ANFIS the linguistic Takagi and Sugeno (TSK)
type fuzzy IF-THEN rules are used for prediction task. These
rules are generated by training the model to approximate
f by f̂ using m observations of n-input–single-output data
pairs (xi , yi). ANFIS is a structure that consists of nodes and
directional links through which the nodes are connected. A
back-propagation strategy is used to train the MFs, while the
least mean squares algorithm determines the coefficients of
the linear combinations in the consequent part of the model.
TSK type fuzzy IF-THEN rules are used in the ANFIS model,
for example:

if
(

x is A1

)
and

(
y is B1

)
, then f1 = p1x + q1y + r1,

if
(

x is A2

)
and

(
y is B2

)
, then f2 = p2x + q2y + r2,
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Figure 6. Current–voltage characteristics for different E. coli concentrations.

where x and y are the inputs, f i is the output, pi , qi and ri are
the design parameters that are determined by the users during
the training process. Ai and Bi are the fuzzy sets according to
predefined MF. An ANFIS model with two inputs and two fuzzy
rules is implemented in Fig. 2.

Bacteria biosensor prediction using the ANFIS model
Fuzzy logic (FL) and fuzzy inference systems (FIS), first proposed
by Zadeh in 1965, provide a solution for making decisions based
on vague, ambiguous, imprecise or missing data. FL represents
models or knowledge using IF–THEN rules.

Neural networks learn system behavior by using system
input–output data. Neural networks have good generaliza-
tion capabilities. The learning and generalization capabilities of
neural networks enable it to more effectively address real-world
problems. Thus, neural networks can solve many problems that are

either unresolved or inefficiently solved by existing techniques,
including fuzzy logic.27

Both fuzzy logic and neural networks have been very successful
in solving many real-world problems. However, both technologies
have some limitations. In fuzzy logic, it is usually difficult to
determine the correct set of rules and membership functions.
Moreover, fine-tuning a fuzzy solution is even more difficult and
takes longer. In neural networks, it is difficult to understand the
‘Black Box,’ i.e. it is incomplete compared with a fuzzy rule based
system description.

An appropriate combination of these two technologies
(Neuro-Fuzzy) can effectively solve the problems of fuzzy logic
and neural networks. A Neuro-Fuzzy approach was used to take
advantage of the neural network’s ability to learn, and the mem-
bership degrees and functions of fuzzy logic. The weights of the
neural networks are mapped to fuzzy logic rules and member

J Chem Technol Biotechnol 2016; 91: 1728–1736 © 2015 Society of Chemical Industry wileyonlinelibrary.com/jctb
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Table 3. 𝜓 parameter corresponding to E. coli concentration values

F(cfu mol−1) Ψ(Constant)

0 0.7

10 0.72

100 0.75

1000 0.78

10000 0.8

functions. Expressing the weights of the neural network by fuzzy
rules also provides a better understanding of the ‘Black Box’ and
thus helps to better design the neural network itself. Thus, while
the learning of neural network is parameterized by the variation
in input data, the learning of ANFIS is fixed by the rules and
membership function values that we define.

In this paper, we develop a Neuro-Fuzzy system for pre cutting
the biosensor conductance variation. Generating the proper MFs
and extracting the fuzzy rules for the prediction of overall ratings
are the main advantages of this method for the defined problem.

Hence, in this study, discovering the knowledge (fuzzy rules)
from experimental data and generalizing the relationship Y= f(X1)
are the main goals of applying ANFIS for accurate prediction of
conductance. In this relationship, X1 stands for input variable and
Y stands for output variable. In the current study, conductance can
be determined as a function of voltage. Predicting the relationship
between inputs and output is one of the important tasks that
ANFIS does. Figure 3 shows the architecture of the implemented
ANFIS that consists of 1 input, 5 rules, and 5 MFs for inputs and
output.

After implementing the ANFIS model using the fuzzy logic
toolbox in Matlab software, the training was tested for error
estimation. Data from one input was given to a trained model of
ANFIS along with actual output. From the input values, suitable
MFs (Fig. 4) were selected to predict the output using the extracted
rules.

In Table 2, the range of MFs for all prediction models devel-
oped by ANFIS are presented. As can be seen from this table,
Gaussian MFs were selected for the models. These ranges
and MF types were selected as they minimize the errors of
prediction.

From the fuzzy rule viewer of the ANFIS model established
shown in Fig. 5, the process of biosensor prediction by selecting
the MFs can be better visualized. From the fuzzy rule viewer above,
when the input parameter is at 0.0923, an output of voltage at 19.2
is obtained.

RESULTS
To check their functionality, the graphene devices were kept in
closed chambers with various E. coli concentrations to allow the
bacteria to grow and multiply. The graphene devices were then
washed with a PBS solution of pH 7.2 (to allow for the production
of the intended final E. coli concentration)4 and were electrically
tested through measuring the I–V characteristics with zero voltage
between the solution and the gate. The current–voltage charac-
teristics of the proposed model for a biosensor based on graphene
in comparison with results from experimental data and the ANFIS
model are illustrated in Fig. 6(a) to 6(f ). It can be observed that
the charge transfer between E. coli (0 to 10 000 cfu mol−1) and
graphene causes the current to increase. An acceptable agreement

Figure 7. Plot of device conductance versus E. coli concentration. Averages
of the values from six devices are taken for each data point and the
corresponding standard errors are represented by error bars.

between extracted data and the suggested model is clearly illus-
trated in the figures. In the proposed model, different amounts of
E. coli concentration are shown in term of control parameter (𝜓 ) as
presented in Table 3.

Figure 7 shows the conductance of graphene at several different
bacteria concentrations.

As can be seen, a concentration of E. coli as low as 10 cfu mL−1

was detected by the graphene based sensor. This is several orders
better than the sensitivity of formerly stated approaches such as
SWCNT-network FETs,49 polymerase series response,50 and exter-
nal plasmon intensification.51 10 cfu mL−1 of E. coli created a
3.25± 0.43% increase in the conductance of the graphene based
sensor (n =6 devices) which relates to an increase of ∼1.17 μA at
Vds= 0.2 V (notably greater than the existing noise of 0.02 μA).

CONCLUSION
The graphene component shows measureable changes in conduc-
tance when in contact with E. Coli, and this behavior is proposed
to be used for the detection of this type of bacteria. A bacteria
concentration control parameter (𝜓 ) is introduced in the deriva-
tion of the analytical model and is calculated iteratively. The sensor
created is label-free, rapid, extremely sensitive and selective for
the detection of bacteria E. Coli, with a very low sensing limit of
10 cfu mL−1. Comparison between the results obtained from the
analytical and ANFIS models enables more accurate estimations.
With the aid of the proposed models, a realistic understanding of
the biosensor performance under exposure to E. coli can be gained
minimizing the need for empirical experiments.

ACKNOWLEDGEMENT
The authors would like to thank Ministry of Higher Education
(MOHE), Malaysia (grant Vot. No. 4F382) and the Universiti
Teknologi Malaysia (grants Vot. No. 03H86 and Vot. No. 04H40) for
the financial support received during the investigation.

REFERENCES
1 Anthony M, Computational Learning Theory. Cambridge University

Press (1997).
2 Wittstock A, Biener J and Erlebacher J Eds, Nanoporous gold: from an

ancient technology to a high-tech material. Royal Soc Chem DOI:
10.1039/9781849735285 (2012).

3 Stahlbock R and Lessmann S, Potential von Support Vektor Maschi-
nen im analytischen Customer Relationship Management. Universität
Hamburg, Hamburg, Arbeitspapier. 2004.

wileyonlinelibrary.com/jctb © 2015 Society of Chemical Industry J Chem Technol Biotechnol 2016; 91: 1728–1736



1735

ANFIS modeling for bacteria detection based on GNR biosensor www.soci.org

4 Huang Y, Dong X, Liu Y, Li L-J and Chen P, Graphene-based biosensors
for detection of bacteria and their metabolic activities. J Mater Chem
21:12358–12362 (2011).

5 Song JM and Kwon HT, Photodiode array on-chip biosensor for the
detection of E. coli O157: H7 pathogenic bacteria. In Biosensors and
Biodetection. Springer, 325–335 (2009).

6 Zhu P, Shelton DR, Karns JS, Sundaram A, Li S, Amstutz P, et al., Detec-
tion of water-borne E. coli O157 using the integrating waveguide
biosensor. Biosens Bioelectron 21:678–683 (2005).

7 Zhang X, Geng P, Liu H, Teng Y, Liu Y, Wang Q, et al., Development of
an electrochemical immunoassay for rapid detection of E. coli using
anodic stripping voltammetry based on Cu@ Au nanoparticles as
antibody labels. Biosens Bioelectron 24:2155–2159 (2009).

8 Liao JC, Mastali M, Li Y, Gau V, Suchard MA, Babbitt J, et al., Develop-
ment of an advanced electrochemical DNA biosensor for bacterial
pathogen detection. J Mol Diagnost 9:158–168 (2007).

9 Yang L and Bashir R, Electrical/electrochemical impedance for rapid
detection of foodborne pathogenic bacteria. Biotechnol Adv
26:135–150 (2008).

10 Chang L, Liu C, He Y, Xiao H and Cai X, Small-volume solu-
tion current-time behavior study for application in reverse
iontophoresis-based non-invasive blood glucose monitoring.
Sci China Chem 54:223–230 (2011).

11 Vashist SK, Zheng D, Al-Rubeaan K, Luong JH and Sheu F-S, Advances
in carbon nanotube based electrochemical sensors for bioanalytical
applications. Biotechnol Adv 29:169–188 (2011).

12 García-Aljaro C, Cella LN, Shirale DJ, Park M, Muñoz FJ, Yates MV, et al.,
Carbon nanotubes-based chemiresistive biosensors for detection of
microorganisms. Biosens Bioelectron 26:1437–1441 (2010).

13 Zhang X, Wang D, Yang D, Li S and Shen Z, Electronic detection of
escherichia coli O157: H7 using single-walled carbon nanotubes
field-effect transistor. Biosensor Eng 4:94 (2013).

14 Villamizar RA, Maroto A, Rius FX, Inza I and Figueras MJ, Fast detection
of Salmonella Infantis with carbon nanotube field effect transistors.
Biosens Bioelectron 24:279–283 (2008).

15 Balabin RM and Lomakina EI, Support vector machine regres-
sion (SVR/LS-SVM) – an alternative to neural networks (ANN)
for analytical chemistry? Comparison of nonlinear methods on
near infrared (NIR) spectroscopy data. Analyst 136:1703–1712
(2011).

16 Goh M and Pumera M, Graphene-based electrochemical sensor for
detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison
of single-, few-, and multilayer graphene nanoribbons and graphite
microparticles. Analyti Bioanalyt Chem 399:127–131 (2011).

17 Akbari E, Arora VK, Enzevaee A, Ahmadi MT, Khaledian M and Yusof
R, Gas concentration effects on the sensing properties of bilayer
graphene. Plasmonics 9(4):987–992 (2014).

18 Yuan W and Shi G, Graphene-based gas sensors. J Mater Chem A
1(35):10078–10091 (2013).

19 Wang Q and Arash B, A review on applications of carbon nan-
otubes and graphenes as nano-resonator sensors. Comput Mater Sci
82:350–360 (2014).

20 Gunn SR, Support vector machines for classification and regression.
ISIS Technical Report. 14 (1998).

21 Nguyen HB, Nguyen VC, Nguyen VT, Le HD, Nguyen VQ, Ngo TTT, et al.,
Development of the layer-by-layer biosensor using graphene films:
application for cholesterol determination. Adv Natural Sci: Nanosci
Nanotechnol 4:015013 (2013).

22 Smola AJ and Schölkopf B, A tutorial on support vector regression.
Statist Comput 14:199–222 (2004).

23 Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M and Kim K, A
roadmap for graphene. Nature 490:192–200 (2012).

24 Pumera M, Polsky R and Banks C, Graphene in analytical science. Analyt
Bioanalyt Chem 406:6883–6884 (2014).

25 Nguyen HB, Nguyen VC, Nguyen VT, Ngo TTT, Nguyen NT, Dang TTH,
et al., Graphene patterned polyaniline-based biosensor for glucose
detection. Adv Natural Sci: Nanosci Nanotechnol 3:025011 (2012).

26 Specht DF, A general regression neural network. Neural Networks, IEEE
Trans 2:568–576 (1991).

27 Falkovsky L, Physical properties of graphene. Uspekhi Fizicheskikh Nauk
182:1223–1234 (2012).

28 Schölkopf B, Burges CJ and Smola AJ, Advances in Kernel Methods:
Support Vector Learning. MIT Press (1999).

29 Liu Z, Liu B, Ding J and Liu J, Fluorescent sensors using
DNA-functionalized graphene oxide. Analyt Bioanalyt Chem
406:6885–6902 (2014).

30 Foxe M, Lopez G, Childres I, Jalilian R, Roecker C, Boguski J, et al., Detec-
tion of ionizing radiation using graphene field effect transistors. In
IEEE Nuclear Science Symposium Conference Record, Vols 1-5, ed by
Yu B, 2009.

31 Ohno Y, Maehashi K and Matsumoto K, Graphene field-effect transis-
tors for label-free biological sensors. In IEEE Sensors, 2010, 903–906.

32 Hasegawa M, Hirayama Y, Ohno Y, Maehashi K and Matsumoto K,
Characterization of reduced graphene oxide field-effect transistor
and its application to biosensor. Japanese J Appl Phys 53(5S1):05FD
(2014).

33 Schwierz F, Graphene transistors. Nat Nano 5:487–496 (2010).
34 Neto AC, Guinea F, Peres N, Novoselov KS and Geim AK, The electronic

properties of graphene. Rev Modern Phys 81:109 (2009).
35 Fang M, Wang K, Lu H, Yang Y and Nutt S, Covalent polymer func-

tionalization of graphene nanosheets and mechanical properties of
composites. J Mater Chem 19:7098–8105 (2009).

36 North S, Lock E, Taitt C and Walton S, Critical aspects of biointerface
design and their impact on biosensor development. Analyt Bioana-
lyt Chem 397:925–933 (2010).

37 Caucheteur C, Guo T and Albert J, Review of plasmonic fiber optic bio-
chemical sensors: improving the limit of detection. Analyt Bioanalyt
Chem 2015:1–15 (2015).

38 Welling M, Support vector regression. Department of Computer Sci-
ence, University of Toronto, Toronto (Canada). 2004.

39 Ahmadi MT, Johari Z, Amin NA, Fallahpour AH and Ismail R, Graphene
nanoribbon conductance model in parabolic band structure. J
Nanomater 2010:12 (2010).

40 Lundstrom M and Guo J, Nanoscale Transistors: Device Physics, Modeling
and Simulation. Springer Science and Business Media (2006).

41 Marulanda JM and Srivastava A, Carrier density and effective
mass calculations in carbon nanotubes. Physica Status Solidi (b)
245:2558–2562 (2008).

42 Wong H-SP and Akinwande D, Carbon Nanotube and Graphene Device
Physics. Cambridge University Press (2010).

43 Ismail R, Ahmadi MT and Anwar S, Advanced Nanoelectronics. CRC Press
(2012).

44 Datta S, Quantum Transport: Atom to Transistor. Cambridge University
Press (2005).

45 Xia J, Chen F, Li J and Tao N, Measurement of the quantum capacitance
of graphene. Nature Nanotechnol 4:505–509 (2009).

46 Shylau A, Kłos J and Zozoulenko I, Capacitance of graphene nanorib-
bons. Phys Rev B 80:205402 (2009).

47 Nilashi M, bin Ibrahim O and Ithnin N, Multi-criteria collaborative fil-
tering with high accuracy using higher order singular value decom-
position and Neuro-Fuzzy system. Knowledge-Based Syst 60:82–101
(2014).

48 Nilashi M, bin Ibrahim O and Ithnin N, Hybrid recommendation
approaches for multi-criteria collaborative filtering. Expert Syst
Applications 41:3879–3900 (2014).

49 Dong X, Long Q, Wang J, Chan-Park MB, Huang Y, Huang W, et al.,
A graphene nanoribbon network and its biosensing application.
Nanoscale 3:5156–5160 (2011).

50 Taylor AD, Ladd J, Yu Q, Chen S, Homola J and Jiang S, Quantitative and
simultaneous detection of four foodborne bacterial pathogens with
a multi-channel SPR sensor. Biosens Bioelectron 22:752–758 (2006).

51 Wang Y, Ye Z and Ying Y, New trends in impedimetric biosensors for the
detection of foodborne pathogenic bacteria. Sensors 12:3449–3471
(2012).

52 Tully E, Hearty S, Leonard P and O’Kennedy R, The development
of rapid fluorescence-based immunoassays, using quantum
dot-labelled antibodies for the detection of Listeria monocyto-
genes cell surface proteins. Int J Biologic Macromol 39:127–134
(2006).

53 Cella LN, Chen W, Myung NV and Mulchandani A, Single-walled
carbon nanotube-based chemiresistive affinity biosensors for
small molecules: ultrasensitive glucose detection. J Am Chem Soc
132:5024–5026 (2010).

54 Lei J and Ju H, Nanotubes in biosensing. Wiley Interdisciplinary Rev:
Nanomed Nanobiotechnoly 2:496–509 (2010).

55 Cheng Y, Liu Y, Huang J, Li K, Xian Y, Zhang W, et al., Amperometric
tyrosinase biosensor based on Fe 3 O 4 nanoparticles-coated carbon
nanotubes nanocomposite for rapid detection of coliforms. Elec-
trochimica Acta 54:2588–2594 (2009).

56 So HM, Park DW, Jeon EK, Kim YH, Kim BS, Lee CK, et al., Detection and
titer estimation of Escherichia coli using aptamer-functionalized

J Chem Technol Biotechnol 2016; 91: 1728–1736 © 2015 Society of Chemical Industry wileyonlinelibrary.com/jctb



1736

www.soci.org E Akbari et al.

single-walled carbon-nanotube field-effect transistors. Small
4:197–201 (2008).

57 Liébana S, Lermo A, Campoy S, Barbé J, Alegret S and Pividori MI, Mag-
neto immunoseparation of pathogenic bacteria and electrochem-
ical magneto genosensing of the double-tagged amplicon. Analyt
Chem 81:5812–5820 (2009).

58 Mujika M, Arana S, Castano E, Tijero M, Vilares R, Ruano-Lopez J, et al.,
Magnetoresistive immunosensor for the detection of Escherichia

coli O157: H7 including a microfluidic network. Biosens Bioelectron
24:1253–1258 (2009).

59 Yang L and Li Y, Simultaneous detection of Escherichia coli O157: H7
and Salmonella Typhimurium using quantum dots as fluorescence
labels. Analyst 131:394–401 (2006).

60 Su X-L and Li Y, Quantum dot biolabeling coupled with immunomag-
netic separation for detection of Escherichia coli O157: H7. Analyt
Chem 76:4806–4810 (2004).

wileyonlinelibrary.com/jctb © 2015 Society of Chemical Industry J Chem Technol Biotechnol 2016; 91: 1728–1736




